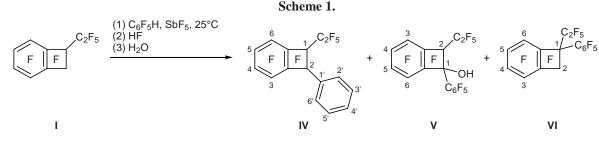
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2007, Vol. 43, No. 11, pp. 1677–1685. © Pleiades Publishing, Ltd., 2007. Original Russian Text © V.R. Sinyakov, T.V. Mezhenkova, V.M. Karpov, V.E. Platonov, 2007, published in Zhurnal Organicheskoi Khimii, 2007, Vol. 43, No. 11, pp. 1678–1686.

Reaction of Perfluorinated 1-Ethyl-, 1,1-Diethyl-, and 1,2-Diethylcyclobutabenzenes with Pentafluorobenzene in SbF₅

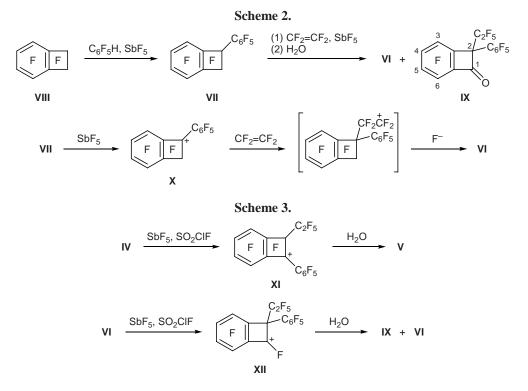
V. R. Sinyakov, T. V. Mezhenkova, V. M. Karpov, and V. E. Platonov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia e-mail: mtv@nioch.nsc.ru

Received March 12, 2007


Abstract—Perfluoro(1-ethyl-1,2-dihydrocyclobutabenzene) reacts with pentafluorobenzene in SbF₅ to give perfluoro(1-ethyl-2-phenyl-1,2-dihydrocyclobutabenzene). Analogous reaction of a mixture of perfluoro-(1,1-diethyl-1,2-dihydrocyclobutabenzene) and perfluoro(1,2-diethyl-1,2-dihydrocyclobutabenzene) leads to the formation (after hydrolysis of the reaction mixture) of perfluorinated 7-phenyl-8,8-diethylbicyclo[4.2.0]octa-1,4,6-trien-3-one, 1,1-diethyl-2-(4-oxocyclohexa-2,5-dienylidene)-1,2-dihydrocyclobutabenzene, and 2-(pent-2-en-3-yl)benzophenone (from the 1,1-isomer) and perfluorinated (E)-1,2-diethyl-1-phenyl-1,2-dihydrocyclobutabenzene, 7,8-diethyl-8-phenylbicyclo[4.2.0]octa-1,4,6-trien-3-one, and 1-[2-(1-phenylprop-1-en-1-yl)-phenyl]propan-1-one (from the 1,2-isomer).

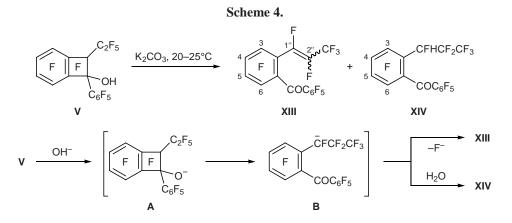
DOI: 10.1134/S1070428007110152


We previously studied reactions of perfluorinated cyclobutabenzene, indan, tetrahydronaphthalene [1], 1-methylcyclobutabenzene [2], 1-ethyl- and 1,1-di-ethylindans, and 1-ethyltetrahydronaphthalene [3] with pentafluorobenzene in the presence of SbF₅, which led to the formation of the corresponding pentafluorophenylcycloalkabenzenes. The reactions with perfluorinated 1-phenylindan, 1-phenyltetrahydronaphthalene, and 1-arylcyclobutabenzenes with antimony pentafluoride were found to involve skeletal rearrangements [4].

In continuation of our studies on pentafluorophenylation of polyfluorocycloalkabenzenes in the present work we examined reactions of perfluorinated 1-ethyl-1,2-dihydrocyclobutabenzene (**I**), 1,1-diethyl-1,2-dihydrocyclobutabenzene (**III**), and 1,2-diethyl-1,2-dihydrocyclobutabenzene (**III**) with pentafluorobenzene in SbF₅ with a view to obtain polyfluorinated cyclobutabenzenes containing both pentafluorophenyl and pentafluoroethyl groups. These compounds are necessary for studying the general relations holding in skeletal transformations of polyfluoroarylcycloalkabenzenes.

Compound I reacted with C_6F_5H in SbF₅ to produce (after treatment of the reaction mixture first with anhydrous hydrogen fluoride and then with water) perfluoro(1-ethyl-2-phenyl-1,2-dihydrocyclobutabenzene (IV, *E/Z* isomer ratio 70:30), perfluoro(2-ethyl-1phenyl-1,2-dihydrocyclobutabenzen-1-ol) (V) (*E/Z* isomer ratio ~42:58), and a small amount of perfluoro(1ethyl-1-phenyl-1,2-dihydrocyclobutabenzene) (VI) (Scheme 1). Compound VI was also obtained by reaction of perfluoro(1-phenyl-1,2-dihydrocyclobutabenzene) (VII) (prepared from perfluorocyclobutabenzene VIII and C_6F_5H in SbF₅[1]) with tetrafluoroethylene

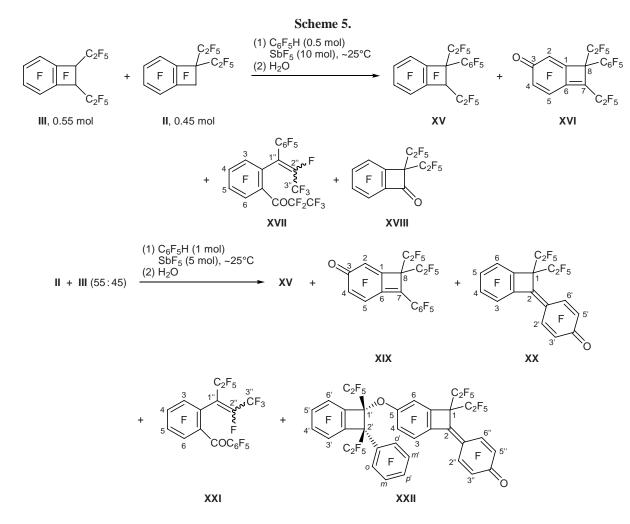
1677



in the presence of SbF₅. In this case, no 1,2-isomer IV was formed, but the reaction mixture contained perfluoro(2-ethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-one) (IX) (Scheme 2).

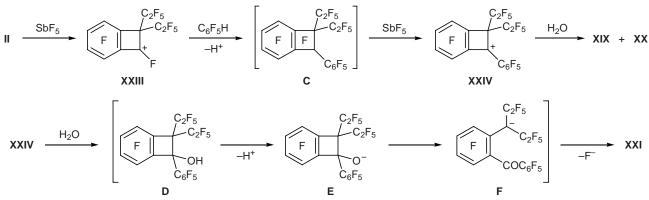
Presumably, ethylcyclobutabenzene I reacts with C_6F_5H in SbF₅ according to the scheme proposed previously for the reactions of cyclobutabenzene **VIII** and perfluoro(1-methyl-1,2-dihydrocyclobutabenzene) with C_6F_5H [1,2]. Product **VI** is formed from compound **VII** via alkylation of tetrafluoroethylene with perfluoro(1-phenyl-1,2-dihydrocyclobutabenzen-1-yl) cation (**X**) generated from cyclobutabenzene **VIII** by the action of SbF₅[1] (Scheme 2) in a way similar to the reaction of polyfluorocyclobutabenzenes with fluorinated olefins in the presence of SbF₅[5, 6].

The formation of hydroxy derivative V and ketone IX under the above conditions may be rationalized as follows. Compounds IV and VI in SbF₅ are likely to exist as cations XI and XII, respectively. In fact, cations XI and XII were detected by ¹⁹F NMR spectroscopy upon dissolution of compounds IV and VI in the system SbF₅–SO₂ClF. Hydrolysis of a solution containing cation XI yields mainly compound V, whereas a mixture of precursor of VI and ketone IX is obtained from cation XII (Scheme 3).

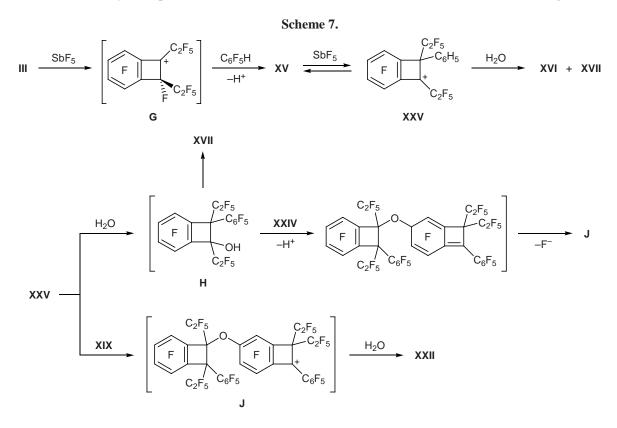

Fluorinated alcohol **V** is stable in acid medium but is converted into a mixture of perfluoro[2-(prop-1-en-1-yl)benzophenone] (**XIII**) and 2-(1,2,2,3,3,3-hexafluoropropyl)nonafluorobenzophenone (**XIV**) on treatment with an aqueous solution of potassium carbonate

or during chromatography on a column charged with silica gel (pH \geq 7). Presumably, deprotonation of hydroxy derivative **V** gives anion **A** which undergoes opening of the four-membered ring (like haloform reaction) with formation of anion **B**. Protonation of the latter yields compound **XIV**, while elimination of fluoride ion leads to product **XIII** (Scheme 4).

In the reaction of a mixture of isomeric diethylcyclobutabenzenes II and III with 0.5 equiv of C_6F_5H in 10 equiv of SbF₅, only 1,2-isomer III is involved. After treatment of the reaction mixture with water, a mixture of perfluorinated (*E*)-1,2-diethyl-1-phenyl-1,2-dihydrocyclobutabenzene (**XV**), 7,8-diethyl-8phenylbicyclo[4.2.0]octa-1,4,6-trien-3-one (**XVI**), and 1-[2-(1-phenylprop-1-en-1-yl)phenyl]propan-1-one (**XVII**, *E/Z* ratio ~83:17) was obtained. 1,1-Isomer II gives rise to perfluoro(2,2-diethyl-1,2-dihydrocyclobutabenzen-1-one) (**XVIII**) (Scheme 5). In the presence of an equimolar amount of pentafluorobenzene (5 equiv of antimony pentafluoride), both isomers II and III are involved. In this case, 1,2-isomer III is converted mainly into compound **XV**, while the amount of ketones **XVI** and **XVII** is insignificant. 1,1-Isomer **II** yields perfluorinated 8,8-diethyl-7-phenylbicyclo[4.2.0]octa-1,4,6-trien-3-one (**XIX**), 4-(2,2diethyl-1,2-dihydrocyclobutabenzen-1-ylidene)cyclohexa-2,5-dien-1-one (**XX**), and 2-(pent-2-en-3-yl)benzophenone (**XXI**, E/Z ratio 40:60). In addition, the reaction mixture contained a small amount of perfluoro-4-[5-(*cis*-1,2-diethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-yloxy)-2,2-diethyl-1,2-dihydrocyclobutabenzen-1-ylidene]cyclohexa-2,5-dien-1-one (**XXII**) (Scheme 5). During isolation of compounds **XVII** and **XXI** by column chromatography or on prolonged storage the *E* isomer was converted (either partially or completely) into the *Z* isomer.


A probable mechanism of the above transformations is shown in Scheme 6. 1,1-Diethylcyclobutabenzene II in SbF₅ loses fluoride ion to form perfluoro-(2,2-diethyl-1,2-dihydrocyclobutabenzen-1-yl) cation (XXIII). Alkylation of pentafluorobenzene with cation XXIII gives compound V which is converted into per-

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 43 No. 11 2007



fluoro(2,2-diethyl-1-phenyl-1,2-dihydrocyclobutabenzen-1-yl) cation (**XXIV**). Hydrolysis of the latter leads to ketones **XIX** and **XX** and probably to alcohol **D**. Opening of the four-membered ring in structure **D** (like haloform reaction) yields benzophenone **XXI** through intermediate anions **E** and **F** (Scheme 6).

Perfluoro(1,2-diethyl-1,2-dihydrocyclobutabenzene) (III) in SbF₅ is likely to converted into cation **G** which alkylates pentafluorobenzene to give compound **XV**. Elimination of fluoride ion from **XV** by the action of SbF₅ yields cyclobutenyl cation **XXV**, and hydrolysis of the latter yields compounds **XVI** and **XVII** (Scheme 7). Presumably, compound **XVII** is formed through intermediate hydroxy derivative **H** in a way similar to the formation of benzophenone **XXI** shown in Scheme 6. Compound **XXII** may result from the reaction of alcohol **H** with cation **XXIV** or/and of cation **XXV** with ketone **XIX** through intermediate ion **J** (Scheme 7). This transformation is likely to occur in the course of treatment of the reaction mixture with water, i.e., when the mixture contains simultaneously hydrolysis products and cyclobutabenzene salts.

The formation of cations **XXIV** and **XXV** in the reaction of cyclobutabenzenes **II** and **III** with C_6F_5H in SbF₅ was detected by ¹⁹F NMR spectroscopy. In addition, we found that cation **XXIII** is generated from

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 43 No. 11 2007

1,1-diethylcyclobutabenzene **II** in antimony pentafluoride and that the concentration of the corresponding cation **G** derived from 1,2-isomer **III** is insufficient to be detected by ¹⁹F NMR spectroscopy. Nevertheless, as we already noted, 1,2-isomer **III** reacts with C_6F_5H at a higher rate than does 1,1-isomer **II**. Presumably, the reaction of pentafluorobenzene with cation **XXIII** is hindered for steric reasons (Scheme 6): the cationic center in **XXIII** is sterically shielded by two bulky pentafluorobenzene molecule to approach the cationic center at the side opposite to the C_2F_5 group on the neighboring carbon atom (Scheme 7).

The patterns observed in the NMR spectra of cations XI, XII, XXIII–XXV are consistent with published data for perfluoro(cyclobutabenzen-1-yl) cation [6] and cation X [1].

The structure of compounds **IV–VI**, **IX**, and **XIII–XXII** was determined on the basis of their ¹⁹F NMR and high-resolution mass spectra. In addition, the molecular and crystalline structures of **XVI**, **XX**, and **XXII** were studied by X-ray diffraction [7]. The coordinates of atoms and geometric parameters of their molecules were deposited to the Cambridge Crystallographic Data Center (entry nos. 635817–635819). Signals in the ¹⁹F NMR spectra were assigned taking into account their position, multiplicity, and intensity. The ¹⁹F NMR data were also used to determine the configuration of molecules **IV**, **V**, **XIII**, **XV**, **XVII**, and **XXI**.

In the spectra of the *E* isomers of **IV** and **V**, signals from fluorine atoms at tertiary carbon atoms appear in a weaker field relative to the corresponding signals of the Z isomers, as in the spectra of polyfluorinated methylphenylcyclobutabenzenes [2]. Fluorine atoms in the CF₂ groups of the perfluoroethyl substituents in *E*-**XV** (*cis* arrangement of the C_2F_5 groups) appear as doublets with coupling constants $J_{AA'} = 52$ and $J_{BB'} =$ 56 Hz, while the corresponding coupling constants for trans-oriented perfluoroethyl groups in isomer Z-XV do not exceed 5 Hz. Signals from fluorine nuclei in the vinyl group of E-XIII are split into doublets with a coupling constant $J_{1,2}$ of 141 Hz, indicating their trans orientation; signals from the cis-fluorine atoms in Z-XIII are characterized by a coupling constant of 7 Hz. The chemical shifts of the vinylic fluorine atoms and the corresponding coupling constants are consistent with the data reported for perfluoro(1-phenylprop-1-enes) [8].

In the ¹⁹F NMR spectrum of E-**XVII**, the CF₃C= signal is a doublet of triplets with coupling constants

 $J_{2",3"}$ and $J_{3",2'(6')}$ of 9 and 4 Hz, respectively, which are typical of *cis* arrangement of the CF₃ and C₆F₅ groups. In the spectrum of *Z*-**XVII** the CF₃ signal appears as a doublet ($J_{2",3"} = 9$ Hz). The *Z* isomer of **XXI** is characterized by a doublet signal from the CF₃ group at the double C=C bond ($J_{2",3"} = 8$ Hz); the corresponding signal of the *E* isomer of **XXI** has a more complex structure indicating *cis* orientation of the CF₃ and C₂F₅ groups with respect to the double bond.

EXPERIMENTAL

The ¹⁹F NMR spectra of the reaction mixtures, SbF₅-SO₂ClF solutions containing perfluorinated cationic species, and solutions of individual compounds in CHCl₃, as well as the ¹H NMR spectrum of ketone XIV, were recorded on a Bruker AC-200 instrument at 188.3 MHz for ¹⁹F and 200 MHz for ¹H. The ¹⁹F NMR spectra of E-XV and XIX were recorded on a Bruker AM-400 instrument (376.4 MHz), and of Z-XV and XXII, on a Bruker AV-300 spectrometer (282.4 MHz). The chemical shifts were measured using C₆F₆ and SO_2ClF (δ_F 262.8 ppm relative to C_6F_6) or residual solvent signal (CHCl₃, δ 7.24 ppm) as internal references. The elemental compositions were determined from the high-resolution mass spectra which were obtained on a Finnigan MAT-8200 mass spectrometer. GLC analysis was performed on an LKhM-72 chromatograph [4000×4-mm column; stationary phase VS-1 or E-301 on Chromosorb W, 15(25):100; carrier gas helium, flow rate 60 ml/min]. GC-MS analysis was performed on a Hewlett-Packard G1081A GC-MS system consisting of an HP 5890 Series II gas chromatograph (HP5 capillary column, 30 m \times 0.25 mm \times 0.25 µm, 5% of diphenyl- and 95% of dimethylsiloxane; carrier gas helium, 1 ml/min) and an HP 5971 mass-selective detector (electron impact, 70 eV).

Reaction of perfluoro(1-ethyl-1,2-dihydrocyclobutabenzene) (I) with pentafluorobenzene in SbF₅. A mixture of 4.02 g (11.6 mmol) of compound I, 7.52 g (34.7 mmol) of SbF₅, 2.14 g (12.7 mmol) of C₆F₅H, and 6 ml of C₆F₆ was stirred for 4 h at 25–27°C in a Teflon vessel. The mixture was then treated with 16 ml of anhydrous hydrogen fluoride, poured into an ice–water mixture, and extracted with chloroform. The organic phase was separated, washed with water, and dried over MgSO₄, and the solvent and C₆F₆ were distilled off to obtain 5.2 g of a mixture containing* 38% of (*E*)-perfluoro(1-ethyl-2-phenyl-1,2-dihydro-

^{*} Hereinafter, the compositions of product mixtures are given in wt % according to the GLC and ¹⁹F NMR data.

cyclobutabenzene) (*E*-**IV**, yield 33%), 16% of (*Z*)-perfluoro(1-ethyl-2-phenyl-1,2-dihydrocyclobutabenzene (*Z*-**IV**, yield 14%), 18% of (*Z*)-perfluoro(2-ethyl-1phenyl-1,2-dihydrocyclobutabenzen-1-ol) (*Z*-**V**, yield 16%), 13% of (*E*)-perfluoro(2-ethyl-1-phenyl-1,2-dihydrocyclobutabenzen-1-ol) (*E*-**V**, yield 11%), and 6% of perfluoro(1-ethyl-1-phenyl-1,2-dihydrocyclobutabenzene (**VI**, yield 5.5%). A 2.57-g portion of the product mixture was subjected to column chromatography on silica gel using as eluent chloroform which was preliminarily shaken with concentrated hydrochloric acid (10:1, by volume) and separated. We thus isolated 1.1 g of compound **IV** (*E*/*Z* ratio 71:29) and two fractions containing compound **V** (0.34 g with *E*/*Z* ratio ~14:86 and 0.14 g with *E*/*Z* ratio ~92:8).

By repeated chromatography of 1.1 g of compound IV (E/Z ratio 71:29) on silica gel (eluent hexane) we isolated a fraction (0.45 g) enriched in the E isomer $(E/Z \text{ ratio } \sim 83:17)$ and a fraction (0.07 g) enriched in the Z-isomer (E/Z ratio ~45:55). ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: isomer *E*-IV: 80.9 (3F, CF₃), 45.2 (1F, F₄) and 36.7 (1F, F_B) (CF₂CF₃), 32.4 (1F, 2-F), 29.2 (1F, 6-F), 28.2 (1F, 3-F), 20.4 (1F, 4-F), 19.7 (1F, 5-F), 11.3 (1F, 1-F), 22.8 (2F, 2'-F, 6'-F), 14.8 (1F, 4'-F), 2.2 $(2F, 3'-F, 5'-F); J_{FF}, Hz: J_{AB} = 293, J_{3,4} = 18, J_{3,5} = 8,$ $J_{3,6} = 23, J_{4,5} = 18, J_{4,6} = 9, J_{5,6} = 18, J_{3,2'(6')} = 12,$ $J(6-F, CF_3) = 18$; isomer Z-IV: 80.3 (3F, CF₃), 41.3 (1F, F_A) and 33.6 (1F, F_B) (CF₂CF₃), 31.1 (1F, 2-F), 29.7 (1F, 6-F), 27.5 (1F, 3-F), 20.2 (1F, 4-F), 19.8 (1F, 5-F), 5.5 (1F, 1-F), ~18 i ~29 (2F, 2'-F, 6'-F), 14.4 (1F, 4'-F), ~2 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{AB} = 290$, $J_{3,4} \approx 19$, $J_{3,5} \approx$ 9, $J_{3,6} \approx 24$, $J_{3,2'(6')} \approx 9$. Found: $[M]^+$ 495.9743 (for E/Zmixture, ~45:55). C₁₆F₁₆. Calculated: M 495.9744. The mass spectra (GC-MS) of Z-IV and E-IV contained the molecular ion peaks with m/z 496.

Compound V. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: isomer *E*-V: 80.7 (3F, CF₃), 46.7 (1F, F_A) and 35.6 (1F, F_B) (CF₂CF₃), 28.4 (1F, 3-F), 26.0 (1F, 6-F), 19.0 (1F, 5-F), 16.7 (1F, 4-F), 20.9 (2F, 2'-F, 6'-F), 11.5 (1F, 1-F), 12.2 (1F, 4'-F), 1.7 (2F, 3'-F, 5'-F); *J*_{FF}, Hz: *J*_{AB} = 291, *J*_{3,4} = 18, *J*_{3,5} = 8, *J*_{3,6} = 24, *J*(3-F, CF₃) = 19, *J*_{4,5} = 19, *J*_{4,6} = 7, *J*_{5,6} = 19, *J*_{6,2'(6')} = 12; isomer *Z*-V: 80.6 (3F, CF₃), 41.8 (1F, F_A) and 33.8 (1F, F_B) (CF₂CF₃), 29.2 (1F, 3-F), 25.7 (1F, 6-F), 19.3 (1F, 5-F), 16.3 (1F, 4-F), 18.2 and 26.2 (2F, 2'-F, 6'-F), 4.5 (1F, 1-F), 12.0 (1F, 4'-F), 1.3 (2F, 3'-F, 5'-F); *J*_{FF}, Hz: *J*_{AB} = 290, *J*_{3,4} = 18, *J*_{3,5} = 9, *J*_{3,6} ≈ 24, *J*(3-F, CF₃) = 21, *J*_{4,5} = 19, *J*_{4,6} = 7, *J*_{5,6} = 19, *J*_{6,2'(6')} ≈ 9. Found: [*M*]⁺ 493.9779 (*E*/*Z* ratio ~14: 86), 493.9799 (*E*/*Z* ratio ~92:8). C₁₆HF₁₅O. Calculated: *M* 493.9788.

Perfluoro(1-ethyl-1-phenyl-1,2-dihydrocyclo**butabenzene**) (VI). A mixture of 1.87 g (7.54 mmol) of perfluorinated cyclobutabenzene VIII, 4.9 g (22.6 mmol) of SbF₅, 1.39 g (8.27 mmol) of C₆F₅H, and 6 ml of C_6F_6 was stirred for 3.5 h at 25°C, 1.5 g (15 mmol) of tetrafluoroethylene was passed through the mixture over a period of 2.5 h at 27-29°C, and the mixture was treated with water at 10-20°C, acidified with 5% hydrochloric acid, and extracted with chloroform. The organic phase was separated and dried over $MgSO_4$, and the solvent and hexafluorobenzene were distilled off to leave 3.5 g of a mixture containing compound VI and perfluoro(2-ethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-one) (IX) at a ratio of 86:14 (¹⁹F NMR data) and a small amount (<5%) of perfluoro(1,2-diethyl-1-phenyl-1,2-dihydrocyclobutabenzene) (XV, E/Z ratio ~2:1). The product mixture was subjected to column chromatography on silica gel using first hexane and then chloroform (preliminarily treated as described above) to isolate 2.9 g of a mixture containing 88% of compound VI (yield 68%), 5% of *E*-**XV**, 2% of *Z*-**XV**, and 0.4 g of **IX** (yield 11%). By several experiments we obtained 9.57 g of a mixture containing 74% of VI, 9% of E-XV, and 5% of Z-XV. It was subjected to column chromatography on silica gel using hexane as eluent to isolate 0.25 g of pure Z-XV, 5.2 g of VI, and 4 g of fractions containing compounds VI and XV at different ratios.

Compound VI. ¹⁹F NMR spectrum, δ_F , ppm: 81.0 (3F, CF₃), 49.4 (1F, F_A) and 43.5 (1F, F_B) (CF₂CF₃), 72.9 (1F, 2-F_A) and 63.8 (1F, 2-F_B), 34.9 (1F, 6-F), 25.5 (1F, 3-F), 20.3 (1F, 5-F), 17.6 (1F, 4-F), 20.6 (1F, 2'-F), 30.5 (1F, 6'-F), 13.7 (1F, 4'-F), 2.2 and 2.0 (1F each, 3'-F, 5'-F); J_{FF} , Hz: $J_{AB} = 280$, $J_{2A,2B} = 203$, $J_{3,4} = 20$, $J_{3,5} = 8$, $J_{3,6} = 23$, $J_{4,5} = 18$, $J_{4,6} = 10$, $J_{5,6} = 18$, $J_{6,2'} =$ 95, $J(6-F, CF_3) = 20$, $J_{6',A} = 8$, $J_{6',B} = 61$, $J_{6',2A} = 33$, $J_{A,2B} = J_{B,2B} = 21$. Found: $[M]^+$ 495.9743. C₁₆F₁₆. Calculated: *M* 495.9744.

Compound **IX**. mp 67–71°C (from hexane). ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 80.9 (3F, CF₃), 47.8 (2F, CF₂CF₃), 35.2 (1F, 3-F), 34.6 (1F, 6-F), 28.2 (1F, 4-F), 17.8 (1F, 5-F), 26.2 (2F, 2'-F, 6'-F), 13.2 (1F, 4'-F), 2.4 (2F, 3'-F, 5'-F); $J_{\rm FF}$, Hz: $J_{3,4} = 8$, $J_{3,5} = 9$, $J_{3,6} = 23$, $J_{4,5} = 18$, $J_{4,6} = 11$, $J_{5,6} = 20$, $J_{3,2'(6')} \approx 40$, J(3-F, CF₃) = 9. Found: $[M]^+$ 473.9729. C₁₆F₁₄O. Calculated: M 473.9725.

Compound Z-XV. ¹⁹F NMR spectrum, δ_F , ppm: 81.5 (3F, 1-CF₂CF₃), 80.7 (3F, 2-CF₂CF₃), 56.9 (1F, 1-CF_A) and 45.8 (1F, 1-CF_B), 42.1 (1F, 2-CF_A) and 34.1 (1F, 2-CF_B), 33.0 (1F, 6-F), 27.6 (1F, 3-F), 19.8 (1F,

5-F), 17.4 (1F, 4-F), 18.7 (1F, 2'-F), 35.4 (1F, 6'-F), 7.5 (1F, 2-F), 14.6 (1F, 4'-F), 2.1 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{1A,1B} = 271$, $J_{2A,2B} = 280$, $J_{3,4} = 19$, $J_{3,5} = 9$, $J_{3,6} = 22$, $J(3-F, 2-CF_3) = 21$, $J_{4,5} = 19$, $J_{4,6} = 10$, $J_{5,6} = 19$, $J_{6,2'} = 67$, $J(6-F, 1-CF_3) = 28$, $J_{6',1B} = 130$, $J_{6',2B} = 62$. Found: $[M]^+$ 595.9684. $C_{18}F_{20}$. Calculated: M 595.9680.

Perfluoro(2-ethyl-1-phenyl-1,2-dihydrocyclobutabenzen-1-yl) cation (XI). Compound IV, 0.23 g (0.46 mmol), was dissolved in 0.99 g (4.57 mmol) of SbF₅, and 0.3 g of SO₂ClF was added. The resulting solution contained cation XI and no precursor IV (19 F NMR data). It was poured into an ice-water mixture and extracted with chloroform, the extract was dried over MgSO₄, and the solvent was distilled off to leave 0.17 g of a mixture of compounds V (E/Z ratio 45:55) and IV (E/Z ratio 70:30) at a ratio of ~93:7 (¹⁹F NMR data). ¹⁹F NMR spectrum of cation **XI**, δ_F , ppm: 82.8 (3F, CF₃), 51.4 (1F, F_A) and 42.9 (1F, F_B) (CF₂CF₃), 77.3 (1F, 4-F), 69.1 (1F, 6-F), 35.5 (2F, 3-F, 5-F), 30.3 (1F, 2-F), 59.0 (1F, 2'-F), 61.1 (1F, 6'-F), 71.5 (1F, 4'-F), 12.9 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{AB} = 285$, $J_{3.4} =$ $J_{4,5} = 18, J_{4,6} = 40, J_{2,6'} \approx 65, J_{B,6'} = 69, J_{6,2'} = 170.$

Perfluoro(2-ethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-yl) cation (XII). Compound VI, 0.24 g (0.48 mmol), was dissolved in 1.09 g (5.03 mmol) of SbF₅, and 0.19 g of SO₂ClF was added. The resulting solution contained cation XII and no precursor VI (¹⁹F NMR data). It was poured into an ice–water mixture and extracted with chloroform, the extract was dried over MgSO₄, and the solvent was distilled off to leave 0.22 g of a mixture of compounds VI and IX at a ratio of 1:1 (¹⁹F NMR data). ¹⁹F NMR spectrum of cation XII, δ_F, ppm: 83.1 (3F, CF₃), 52.3 (2F, CF₂CF₃), 214.6 (1F, 1-F), 107.2 (1F, 4-F), 78.8 (1F, 6-F), 47.8 (1F, 3-F), 36.8 (1F, 5-F), 26.2 (2F, 2'-F, 6'-F), 20.8 (1F, 4'-F), 2.3 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{1,4} = 40$, $J_{3,4} = J_{4,5} =$ 20, $J_{4,6} = 55$.

Reaction of perfluoro(2-ethyl-1-phenyl-1,2-dihydrocyclobutabenzen-1-ol) (V) with aqueous potassium carbonate. Compound V, 0.21 g (0.43 mmol, E/Z ratio 40:60), was dissolved in 2.5 ml of chloroform, 2.5 g of a 10% aqueous solution of potassium carbonate (0.25 g, 1.81 mmol) was added, and the mixture was stirred for 2 h at 25°C, treated with water, acidified with 5% hydrochloric acid, and extracted with chloroform. The extract was dried over MgSO₄, and the solvent was distilled off. The residue was 0.2 g of a mixture of perfluoro[2-(prop-1-en-1-yl)benzophenone] (XIII, E/Z ratio ~90:10) and 2-(1,2,2,3,3,3hexafluoropropyl)nonafluorobenzophenone (XIV) at a ratio of 62:38 (¹⁹F NMR data). The product mixture was dissolved in 2 ml of chloroform, 2 g of 10% aqueous K_2CO_3 was added, and the mixture was stirred for 4 h at 22°C and treated as described above to isolate 0.19 g of a mixture of **XIII** and **XIV** at the same ratio. A 1.13-g portion of that mixture was subjected to column chromatography on silica gel using hexane as eluent to isolate 0.15 g of a mixture of *E*-**XIII** and *Z*-**XIII** (82:18), 0.48 g of *E*-**XIII**, and 0.36 g of **XIV**.

Compound *E*-**XIII**. mp 71–72.5°C (from hexane). ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 93.7 (3F, CF₃), 30.9 (1F, 3-F), 24.7 (1F, 6-F), 17.2 (1F, 4-F), 16.0 (1F, 5-F), 21.7 (2F, 2'-F, 6'-F), 17.5 (1F, 4'-F), 2.8 (2F, 3'-F, 5'-F), 29.6 (1F, 1"-F), 0.8 (1F, 2"-F). *J*_{FF}, Hz: *J*_{3,4} = 21, *J*_{3,5} = 8, *J*_{3,6} = 12, *J*_{3,2"} = 18, *J*_{4,5} = 19, *J*_{4,6} = 8, *J*_{5,6} = 22, *J*_{1",2"} = 141, *J*(1"-F, CF₃) = 21, *J*(2"-F, CF₃) = 11. Found: [*M*]⁺ 473.9734. C₁₆F₁₄O. Calculated: *M* 473.9725.

Compound Z-**XIII**. ¹⁹F NMR spectrum (from *E/Z* isomer mixture, ~82:18), $\delta_{\rm F}$, ppm: 92.9 (3F, CF₃), 29.8 (1F, 3-F), 25.4 (1F, 6-F), 17.7 (1F, 4-F), 16.5 (1F, 5-F), 21.5 (2F, 2'-F, 6'-F), 17.2 (1F, 4'-F), 2.8 (2F, 3'-F, 5'-F), 50.8 (1F, 1"-F), 15.5 (1F, 2"-F); *J*_{FF}, Hz: *J*_{3,4} = 22, *J*_{3,5} = 8, *J*_{3,6} = 11, *J*_{4,5} = 19, *J*_{4,6} = 8, *J*_{5,6} = 22, *J*_{1",2"} = 7, *J*(1"-F, CF₃) = 6, *J*(2"-F, CF₃) = 13. GC–MS data for *E/Z* mixture: *m/z* 474 [*M*]⁺.

Ketone **XIV**. mp 57.5–58.5°C (from hexane). ¹H NMR spectrum: δ 6.35 ppm, d.d. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 79.1 (3F, CF₃), -38.4 (1F, CFH), 40.6 (1F, F_A) and 32.5 (1F, F_B) (C**F**₂CF₃), 28.8 (1F, 3-F), 23.7 (1F, 6-F), 14.9 (1F, 4-F), 13.8 (1F, 5-F), 21.9 (2F, 2'-F, 6'-F), 17.7 (1F, 4'-F), 2.5 (2F, 3'-F, 5'-F); J_{FF}, Hz: J_{A,B} = 285, J_{3,4} = 20, J_{3,5} = 7, J_{3,6} = 11, J_{4,5} = 21, J_{4,6} = 7, J_{5,6} = 23, ²J_{HF} = 43, ³J(H, F_B) = 20. Found: [*M*]⁺ 493.9792. C₁₆HF₁₅O. Calculated: *M* 493.9788.

Reaction of perfluorinated 1,1-diethyl- and 1,2-diethyl-1,2-dihydrocyclobutabenzenes II and III with pentafluorobenzene in SbF₅. *a*. A mixture of compounds II and III (45:55), 1.02 g (2.28 mmol), was dissolved in 4.93 g (22.74 mmol) of SbF₅. According to the ¹⁹F NMR data, the solution contained perfluoro(2,2-diethyl-1,2-dihydrocyclobutabenzen-1-yl) cation (**XXIII**) and compound III. Pentafluorobenzene, 0.2 g (1.19 mmol), was added to the solution, and the mixture was kept for 23 h at 23°C; it contained cation **XXIII** and perfluoro(1,2-diethyl-2-phenylcyclobutabenzen-1-yl) cation (**XXIII** and perfluoro(1,2-diethyl-2-phenylcyclobutabenzen-1-yl) cation (**XXIII** and perfluoro(1,2-diethyl-2-phenylcyclobutabenzen-1-yl) cation (**XXV**) at a ratio of ~1:1, while no other products were present (¹⁹F NMR data). The mixture was treated with water at 0–5°C, acidified with 5% hydrochloric acid, and extracted with chloro-

form. The extract was dried over MgSO₄, and the solvent was distilled off. The residue was 1.06 g of a mixture containing 8% of initial compound II, 7% of XV (yield 10%, calculated on the initial compound **III**), 26% of perfluoro(7,8-diethyl-8-phenylbicyclo-[4.2.0]octa-1,4,6-trien-3-one) (XVI, yield 38%), 20% of (*E*)-perfluoro{1-[2-(1-phenylprop-1-en-1-yl)phenyl]propan-1-one} (E-XVII, yield 29%), 4% of (Z)-perfluoro{1-[2-(1-phenylprop-1-en-1-yl)phenyl]propan-1one} (Z-XVII, yield 6%), and 28% of perfluoro(2,2diethyl-1,2-dihydrocyclobutabenzen-1-one) (XVIII). A 0.93-g portion of the product mixture was subjected to column chromatography on silica gel using as eluent first carbon tetrachloride and then chloroform preliminarily treated with concentrated hydrochloric acid as described above. We thus isolated 0.19 g of compound **XVII** (E/Z ratio ~80:20) and 0.16 g of **XVI**. By repeated chromatographic separation of 0.19 g of isomer mixture XVII on silica gel (eluent hexane) we isolated 0.02 g of *E*-XVII and 0.03 g of *Z*-XVII.

Compound **XVI**. mp 89.5–91°C (from hexane). ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 81.7 (3F, CF₃), 79.4 (3F, CF₃), 61.0 (1F, F_A) and 45.6 (1F, F_B, 8-CF₂CF₃), 48.8 (2F, 7-CF₂CF₃), 43.4 (1F, 2-F), 32.0 (1F, 4-F), 28.2 (1F, 5-F), 27.2 (2F, 2'-F, 6'-F), 15.0 (1F, 4'-F), 2.9 (2F, 3'-F, 5'-F); $J_{\rm FF}$, Hz: $J_{A,B} = 288$, $J_{2,4} = 7$, $J_{2,2'(6')} = 42$, $J_{4,5} = 7$. Found: $[M]^+$ 573.9665. C₁₈F₁₈O. Calculated: *M* 573.9662.

Isomer *E*-**XVII**. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 91.2 (3F, 3"-F), 80.9 (3F, CF₂CF₃), 56.3 (1F, 2"-F), 41.7 (2F, CF₂CF₃), 29.9 (1F, 3-F), 29.6 (1F, 6-F), 18.0 (1F, 4-F), 13.5 (1F, 5-F), 24.0 and 25.0 (1F each, 2'-F, 6'-F), 13.5 (1F, 4'-F), 1.8 (2F, 3'-F, 5'-F); *J*_{FF}, Hz: *J*_{3,4} = 20, *J*_{3,5} = 7, *J*_{3,6} = 10, *J*_{3,2'(6')} \approx 10, *J*_{4,5} = 21, *J*_{4,6} = 8, *J*_{5,6} = 21, *J*(6-F, CF₃) = 7, *J*_{2",3"} = 9, *J*_{3",2'(6')} = 4. Found: [*M*]⁺ 573.9662. C₁₈F₁₈O. Calculated: *M* 573.9662.

Isomer Z-**XVII**. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 92.7 (3F, 3"-F), 80.7 (3F, CF₂CF₃), 57.6 (1F, 2"-F), 42.2 (1F, F_A) and 40.8 (1F, F_B) (CF₂CF₃), 30.7 (1F, 3-F), 28.9 (1F, 6-F), 17.6 (1F, 4-F), 13.7 (1F, 5-F), 24.9 (2F, 2'-F, 6'-F), 13.2 (1F, 4'-F), 1.9 (2F, 3'-F, 5'-F); $J_{\rm FF}$, Hz: $J_{A,B} = 302, J_{3,4} = 21, J_{3,5} = 7, J_{3,6} = 10, J_{3,2'(6')} = 10, J_{4,5} = 20, J_{4,6} = 8, J_{5,6} = 21, J_{6,A} = 22, J_{6,B} = 28, J(6-F, CF_3) = 7, J_{2",3"} = 9, J_{2",2'(6')} = 17.$ Found: $[M]^+$ 573.9656. C₁₈F₁₈O. Calculated: *M* 573.9662.

Compound **XVIII**. ¹⁹F NMR spectrum, δ_F , ppm: 80.8 (6F, CF₃), 50.6 (4F, CF₂), 37.0 (1F, 6-F), 29.6 (1F, 4-F), 29.3 (1F, 3-F), 19.8 (1F, 5-F); J_{FF} , Hz: $J_{3,4} = 19$, $J_{3,5} = 8$, $J_{3,6} = 23$, $J_{4,5} = 17$, $J_{4,6} = 13$, $J_{5,6} = 20$. Found: $[M]^+$ 425.9729. C₁₂F₁₄O. Calculated: *M* 425.9725.

Cation **XXIII**. ¹⁹F NMR spectrum, δ_F , ppm: 83.7 (6F, CF₃), 57.0 (4F, CF₂CF₃), 210.5 (1F, 1-F), 114.3 (1F, 4-F), 84.7 (1F, 6-F), 44.3 (1F, 3-F), 40.5 (1F, 5-F); J_{FF} , Hz: $J_{1,4} = 44$, $J_{3,4} = J_{4,5} = 20$, $J_{4,6} = 62$.

b. A mixture of compounds II and III (45:55), 1.13 g (2.52 mmol), was dissolved in 2.74 g (12.64 mmol) of SbF₅, 0.47 g (2.8 mmol) of pentafluorobenzene was added, the mixture was stirred for 11 h at 27°C and was then kept for 14 h at that temperature, and its ¹⁹F NMR spectrum was recorded. It contained cations XXIII and XXV and perfluoro(2,2diethyl-1-phenylcyclobutabenzen-1-yl) cation (XXIV) at a ratio of ~10:55:35, while no other products were present. Hexafluorobenzene, 1 ml, was added, and the mixture was treated as described above in a. We obtained 1.36 g of a mixture containing 5% of compound **II**, 44% of *E*-**XV** (yield 70%),** 3% of ketone **XVI** (yield 5%), <3% of XVII, 2% of XVIII, 12% of perfluoro(8,8-diethyl-7-phenylbicyclo[4.2.0]octa-1,4,6trien-3-one) (XIX, yield 24%), 7% of perfluoro[4-(2,2diethyl-1,2-dihydrocyclobutabenzen-1-ylidene)cyclohexa-2,5-dien-1-one] (XX, yield 14%), 5% of (E)-perfluoro[2-(pent-2-en-3-yl)benzophenone] (E-XXI, yield 10%), 7% of (Z)-perfluoro[2-(pent-2-en-3-yl)benzophenone] (Z-XXI, yield 14%), and 6% of perfluoro-{4-[5-(*cis*-1,2-diethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-yloxy)-2,2-diethyl-1,2-dihydrocyclobutabenzen-1-ylidene]cyclohexa-2,5-dien-1-one} (XXII, yield 6%). A 1.23-g portion of that mixture was subjected to column chromatography on silica gel using carbon tetrachloride as eluent to isolate 0.42 g of *E*-XV, 0.11 g of XXI (*E*/*Z* ratio 40:60), 0.9 g of XIX, 0.03 g of XXII, and 0.05 g of XX. By repeated chromatographic separation of 0.11 g of isomer mixture E-XXI/Z-XXI on silica gel (eluent hexane) we isolated 0.025 g of pure Z-XXI.

Cation **XXIV**. ¹⁹F NMR spectrum, δ_F , ppm (from a mixture with **XXIII** and **XXV**): 83.8 (6F, CF₃), 53.4 (4F, CF₂CF₃), 82.8 (1F, 4-F), 78.3 (1F, 6-F), 38.7 (1F, 3-F), 32.5 (1F, 5-F), 59–61 (2F, 2'-F, 6'-F), 71.9 (1F, 4'-F), 13.0–14.5 (2F, 3'-F, 5'-F).

Compound *E*-**XV**. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 81.1 (3F, 1-CF₂CF₃), 81.0 (3F, 2-CF₂CF₃), 53.5 (1F, F_{1A}) and 47.6 (1F, F_{1B}, 1-CF₂CF₃), 46.6 (1F, F_{2A}) and 41.1 (1F, F_{2B}, 2-CF₂CF₃), 33.3 (1F, 6-F), 27.9 (1F, 3-F), 20.0 (1F, 5-F), 17.3 (1F, 4-F), 19.9 (1F, 2'-F), 30.2 (1F, 6'-F), 22.7 (1F, 2-F), 14.4 (1F, 4'-F), 2.1 and 2.0 (1F each, 3'-F, 5'-F); *J*_{FF}, Hz: $J_{1A,1B} = 274$, $J_{2A,2B} =$

^{**} The yields of **XV–XVII** were calculated on the initial isomer **III**, and the yields of **XIX–XXII**, on isomer **II**.

288, $J_{2,6'} = 22$, J(2-F, CF₃) = 17, $J_{3,4} = 19$, $J_{3,5} = 9$, $J_{3,6} = 22$, J(3-F, CF₃) = 24, $J_{4,5} = 19$, $J_{4,6} = 9$, $J_{5,6} = 18$, $J_{6,2'} = 69$, J(6-F, CF₃) = 27, $J_{6',1B} = 59$, $J_{6',1B} = 57$, $J_{1A,2A} = 52$, $J_{1B,2B} = 56$, $J_{1A,2B} = 13$. Found: $[M]^+$ 595.9673. C₁₈F₂₀. Calculated: M 595.9680.

Compound **XIX**. ¹⁹F NMR spectrum, δ_F , ppm: 81.6 (6F, CF₃), 51.0 (2F, F_A) and 48.9 (2F, F_B) (C**F**₂CF₃), 33.8 (1F, 2-F), 30.4 (1F, 4-F), 27.9 (1F, 5-F), 28.3 (2F, 2'-F, 6'-F), 19.8 (1F, 4'-F), 3.4 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{A,B} = 290, J_{2,4} = 8, J_{2,5} = 8, J_{4,5} = 8, J_{5,2'(6')} = 31$. Found: $[M]^+$ 573.9655. C₁₈F₁₈O. Calculated: *M* 573.9662.

Compound **XX**. mp 88–89°C (after sublimation at a residual pressure of 2 mm, 30°C). ¹⁹F NMR spectrum, δ_F , ppm: 81.6 (6F, CF₃), 53.8 (2F, F_A) and 48.0 (2F, F_B, CF₂CF₃), 39.6 (1F, 3-F), 27.9 (1F, 6-F), 26.1 (1F, 5-F), 19.9 (1F, 4-F), 27.3 (1F, 6'-F), 25.4 (1F, 2'-F), 14.1 and 13.3 (1F each, 3'-F, 5'-F); J_{FF} , Hz: $J_{A,B} = 290$, $J_{3,4} = 18$, $J_{3,5} = 13$, $J_{3,6} = 22$, $J_{4,5} = 18$, $J_{4,6} = 8$, $J_{5,6} =$ 19, $J_{6,B} = 90$, $J_{3,2'} = 178$. Found: $[M]^+$ 573.9655. C₁₈F₁₈O. Calculated: *M* 573.9662.

Isomer *E*-**XXI**. ¹⁹F NMR spectrum (*E*/*Z* isomer mixture, ~40:60), $\delta_{\rm F}$, ppm: 95.7 (3F, 3"-F), 78.7 (3F, CF₃), 67.9 (1F, 2"-F), 53.3 (1F, F_A) and 52.0 (1F, F_B) (CF₂CF₃), 28.9 (1F, 3-F), 25.8 (1F, 6-F), 17.6 (1F, 4-F), 13.8 (1F, 5-F), 21.4 (2F, 2'-F, 6'-F), 16.8 (1F, 4'-F), 2.6 (2F, 3'-F, 5'-F); *J*_{FF}, Hz: *J*_{A,B} = 285, *J*_{3,4} = 21, *J*_{3,5} = 7, *J*_{3,6} = 10, *J*_{4,5} = 20, *J*_{4,6} = 9, *J*_{5,6} = 22, *J*_{B,3"} = 24, *J*_{A,3"} = 10, *J*_{2",3"} ≈ 8, *J*(3"-F, CF₃) ≈ 7. Found: [*M*]⁺ 573.9666 (*E*/*Z*, ~40:60). C₁₈F₁₈O. Calculated: *M* 573.9662.

Isomer Z-XXI. ¹⁹F NMR spectrum, $\delta_{\rm F}$, ppm: 92.5 (3F, 3"-F), 77.9 (3F, CF₃), 58.7 (1F, 2"-F), 50.3 (1F, F_A) and 49.5 (1F, F_B) (CF₂CF₃), 29.6 (1F, 3-F), 26.2 (1F, 6-F), 18.2 (1F, 4-F), 14.4 (1F, 5-F), 21.4 (2F, 2'-F, 6'-F), 16.7 (1F, 4'-F), 2.6 (2F, 3'-F, 5'-F); $J_{\rm FF}$, Hz: $J_{A,B} = 278$, $J_{3,4} = 22$, $J_{3,5} = 7$, $J_{3,6} = 11$, $J_{4,5} = 20$, $J_{4,6} = 9$, $J_{5,6} = 23$, $J_{A,2"} = 29$, $J_{B,2"} = 10$, $J_{2",3"} = 8$, $J(2"-F, CF_3) = 15$.

Compound **XXII**. mp 160–166°C (from hexane– CH₂Cl₂). ¹⁹F NMR spectrum, δ_F , ppm: 86.0 (3F, 1'-CF₂CF₃), 81.3 (9F, 1-CF₂CF₃, 2'-CF₂CF₃), 57.8 (1F, F_A) and 47.5 (1F, F_B) (2'-CF₂CF₃), 56.1 (1F, F_A) and 50.4 (1F, F_B) (1'-CF₂CF₃), 55.1 (1F, F_A) and 47.3 (1F, F_B) (1-CF₂CF₃), 52.3 (1F, F_A) and 49.0 (1F, F_B) (1-CF₂CF₃), 39.8 (1F, 3-F), 37.7 (1F, o'-F), 33.0 (1F, 3'-F), 31.7 (1F, 4-F), 31.0 (1F, 6'-F), 28.0 (1F, 6-F), 26.5 (1F, 6"-F), 25.4 (1F, 2"-F), 19.9 (1F, o-F), 21.3 and 16.8 (1F each, 4'-F, 5'-F), 15.2 and 14.2 (1F each, 3"-F, 5"-F), 14.6 (1F, p-F), 2.2 and 1.6 (1F each, m-F, m'-F); J_{FF}, Hz: J_{1A,1B} = 297, J_{3A,3B} = 284, J_{2A,2B} = 282, $J_{A,B} = 272, J_{2'',3} = 180, J_{6,2B} \approx J_{6,3B} = 89, J_{1A,1B} = 65, J_{B,1A} \approx 50, J_{3',o} \approx 55$. Found: $[M]^+ 1147.9433. C_{36}F_{36}O_2$. Calculated: $M \, 1147.9323$.

Perfluoro(1,2-diethyl-2-phenyl-1,2-dihydrocyclobutabenzen-1-yl) cation (XXV). Compound XV, 0.17 g (0.28 mmol), was dissolved in 0.88 g (4.06 mmol) of SbF₅, and 0.21 g of SO₂ClF was added. According to the ¹⁹F NMR data, the resulting solution contained cation XXV and no precursor XV. The solution was poured into an ice-water mixture and extracted with chloroform, the extract was dried over MgSO₄, and the solvent was distilled off. The residue, 0.14 g, was a mixture of 57% of E-XV, 23% of XVI, and 8% of ketone XVII. ¹⁹F NMR spectrum of cation **XXV**, $\delta_{\rm F}$, ppm: 85.1 and 83.9 (3F each, CF₃), 59.9 (1F, F_A) and 51.0 (1F, F_B) (CF₂CF₃, $J_{A,B} = 290$ Hz), 57.7 (1F, F_A) and 52.3 (1F, F_B) (CF₂CF₃, $J_{A,B} = 285$ Hz), 140.7 (1F, 4-F), 91.5 (1F, 6-F), 52.8 (1F, 3-F), 39.4 (1F, 5-F), 27.2 (2F, 2'-F, 6'-F), 21.5 (1F, 4'-F), 7.3 (2F, 3'-F, 5'-F); J_{FF} , Hz: $J_{3,4} = J_{4,5} = 22$, $J_{4,6} = 80$.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 06-03-32170).

REFERENCES

- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., Sinyakov, V.R., and Shchegoleva, L.N., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 1158.
- Sinyakov, V.R., Mezhenkova, T.V., Karpov, V.M., Platonov, V.E., Rybalova, T.V., and Gatilov, Yu.V., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 837.
- Sinyakov, V.R., Mezhenkova, T.V., Karpov, V.M., Platonov, V.E., Rybalova, T.V., and Gatilov, Yu.V., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 77.
- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Sinyakov, V.R., J. Fluorine Chem., 2001, vol. 107, p. 53; Sinyakov, V.R., Mezhenkova, T.V., Karpov, V.M., and Platonov, V.E., J. Fluorine Chem., 2004, vol. 125, p. 49; Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Sinyakov, V.R., J. Fluorine Chem., 2002, vol. 117, p. 73.
- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., J. Fluorine Chem., 1985, vol. 28, p. 121.
- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, p. 2315.
- Rybalova, T.V., Gatilov, Yu.V., Sinyakov, V.R., Mezhenkova, T.V., and Karpov, V.M., *Zh. Strukt. Khim.*, 2008, vol. 49, p. 123.
- Belen'kii, G.G., Savicheva, G.I., Lur'e, E.P., and German, L.S., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1978, p. 1640.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 43 No. 11 2007